
Journal of Sound and <ibration (2001) 245(5), 877}913
doi:10.1006/jsvi.2001.3617, available online at http://www.idealibrary.com on
MULTI-DIMENSIONAL CHARACTERIZATION
OF VIBRATION ISOLATORS OVER A WIDE RANGE

OF FREQUENCIES

S. KIM AND R. SINGH

Acoustics and Dynamics ¸aboratory, Department of Mechanical Engineering and ¹he Center for
Automotive Research, ¹he Ohio State ;niversity, Columbus, OH 43210-1107, ;.S.A.

E-mail: singh.3@osu.edu

(Received 26 September 2000, and in ,nal form 11 January 2001)

This article presents a new experimental identi"cation method for extracting
frequency-dependent multi-dimensional dynamic sti!nesses of an isolator. The scope is
limited to linear time-invariant system and analysis is performed only in the frequency
domain. The proposed characterization method uses two inertial elements and an isolator,
and a re"ned multi-dimensional mobility synthesis formulation is developed for estimating
the properties of this system. For example, dynamic sti!nesses of an isolator are decomposed
given the measured mobilities of the overall system and rigid body system theory.
Approximate identi"cation schemes for transfer dynamic sti!nesses, as proposed by prior
researchers, are analytically examined for axial motions. The aforementioned approximate
scheme is then extended to the identi"cation of #exural sti!nesses. Both symmetric and
asymmetric isolators are analyzed, based on a simulation example that models the isolator
using a Euler beam and wave equation formulations for #exural and longitudinal motions
respectively. Finally, the proposed identi"cation method is applied to three rubber isolators
up to 2 kHz, and transfer sti!ness estimations are successfully compared with data measured
on a commercial test machine for axial motions up to 1 kHz. Our method is very promising
though its utility could be limited because of the zero preload assumption.
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1. INTRODUCTION

Experimental methods must be adopted to dynamically characterize sti!nesses of rubber,
hydraulic, air and metallic isolators since they invariably exhibit frequency-dependent
properties and are sensitive to mean loads and dynamic excitation levels [1, 2]. This is
especially true for a visco-elastic material since the material properties are complex-valued
and show frequency, temperature and strain dependence [2, 3]. Historically,
characterization methods have focused on axial or compressional sti!ness, since many
vibration isolation measures consider only this component [1, 2, 4, 5]. Also, in most studies
only the lower frequency range has been considered [6}8], and the direct measurement of
dynamic sti!ness on commercial machines is typically limited to lower frequencies due to
resonances in the machine [9]. In this article, we propose a new dynamic characterization
method that should be valid over a wide frequency range. Further, we introduce a new
isolator sti!ness matrix formulation. Various subsets of this concept will be examined and
compared with existing experimental techniques [10, 11], as well with some recent literature
[12, 13]. Given the complexity of issues, only the linear time-invariant formulation will be
considered in this article. Consequently, the e!ects of preload, temperature and the like will
be beyond the scope of the present work.
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2. EXPERIMENTAL CHARACTERIZATION ISSUES

Static sti!ness can easily be measured using commercial (such as Instron and MTS)
machines [9]. It is well known that dynamic properties di!er from static properties,
especially for elastomeric materials [1, 3]. A majority of prior studies have focused on the
e!ect of compressional or axial sti!ness of isolators [1, 2, 4, 5] since it has been regarded as
a main contributor to the vibration transmission. For instance, Nielsen et al. [7] have
proposed a method for the estimation of elastomeric material properties, based on the
measurement of the driving point axial sti!ness. Also, Jeong [8] has developed an
identi"cation method for axial and shear sti!nesses of an isolator based on
a three-degree-of-freedom modal experiment. However, Sanderson [14] has shown that the
rotational sti!ness could be a signi"cant contributor to the vibration transmission.
Nonetheless, frequency-invariant sti!nesses were chosen in his study and the coupling
sti!nesses in #exural motions were ignored. Rotational mobilities or sti!nesses of
a structure can be identi"ed by adding and subtracting translational responses, given
harmonic excitation to a rigid body [15]. But, its identi"cation is not straightforward for
many real-life problems since the rotational components must be handled by a coupled
formulation with lateral components in #exure [16].

Commercial equipment is available for the identi"cation of cross-point dynamic
sti!nesses in single and multi-axis motions, under various preloads. However, the use
of such machines is mostly limited to lower frequencies [9]. In order to correctly predict
the vibrational response of any structure, both driving point and transfer sti!nesses must
be incorporated, especially when standing wave e!ects occur within the isolators. Such
e!ects, when resulting from isolator inertial properties, tend to be pronounced when the
frequency increases [2]. Therefore, approaches that neglect key di!erences between driving
point and transfer sti!nesses may yield erroneous predictions, especially in the
high-frequency regime.

Several approximate identi"cation methods for transfer sti!ness of resilient elements
have been proposed for axial (compressional) motions at higher frequencies [10, 11]; these
have been further re"ned for lower frequencies [12, 13]. One such approximate method has
also been applied to the identi"cation of #exural sti!nesses [12]. Recently, a new
characterization method has also been proposed to examine the non-linear behavior of
isolators at lower frequencies but it is also limited to axial motion [17]. Overall, an
appropriate characterization method for the measurement of multi-dimensional sti!nesses
of an isolator has yet to be proposed. The underlying measurement and estimation issues
are even more di$cult as the frequency increases [6, 7].

3. PROBLEM FORMULATION

Problem formulation is conceptually shown in Figure 1 where VSi , VPi and VRi are the
velocity vectors for source (S), path (P) and receiver (R) respectively. Here F

Si
is the force

excitation vector at the source, FPi and FRi are the transmitted force vectors at the junction
of source and path and at the junction of path and receiver respectively. Also, a, b and
c represent the mobility matrices (M) of source, path and receiver respectively. The primary
objectives of this study include the following: (1) propose an analytical framework, based on
mobility synthesis method of Figure 1(b) that will synthesize or extract a multi-dimensional
sti!ness matrix at any given frequency (u); (2) suggest a new experimental identi"cation
method for spectrally varying multi-dimensional properties of an isolator (in terms of
mobility or sti!ness); (3) apply the proposed identi"cation scheme to one simulation



Figure 1. Problem formulation: (a) isolator is depicted as a multi-dimensional path for any practical problem;
(b) source}path}receiver system and their mobility matrices a, b, c. Here, F and V are vectors.
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example and three isolator examples; (4) examine the methods proposed by Thompson et al.
[10}13] and their underlying assumptions using analytical and numerical methods; and (5)
validate the proposed identi"cation scheme by comparing results with data measured on
a commercial machine.

The scope is limited to a linear time-invariant (LTI) system, and the e!ects of preload, etc.
are not considered. Frequency domain methods such as the mobility synthesis or transfer
matrix techniques are well established for the analysis of a combined system given
individual components [18}22]. The responses and interfacial forces for more than
three-sub-systems systems can be obtained by numerically iterating the synthesis procedure
based on two sub-systems. Nonetheless, an analytical expression for a combination of three
(or more) sub-systems is still needed for some cases. For example, Sykes [22] has developed
an analytical expression for multi-dimensional responses at the receiver input location of
a source}path}receiver system but the excitation was expressed in terms of either a free
velocity or a blocked force source. In our study, we examine a more general case. For the



Figure 2. Proposed identi"cation scheme. (a) schematic; (b) simulation example; (c) symmetric isolator used for
simulation; (d) asymmetric isolator used for simulation.
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identi"cation of spectrally varying sti!ness properties, re"ned multi-dimensional mobility
synthesis and decomposition procedures will be formulated. Note that Sykes [22] did not
consider the decomposition process. The proposed formulation is applied to extract the
properties of an isolator from the measured response of a combined structure and then to
decompose translational and rotational components of mobility. The experimental system
of Figure 2(a), as proposed in our study, consists of two masses (simulating source and
receiver) that are attached to either sides of an isolator. Refer to Figure 3 for lumped models
of the system. The proposed method will be applied to three rubber isolators of Figure 4 and
the mobility matrix for each isolator will be identi"ed up to 2 kHz using the proposed
method. A frequency range up to 2 kHz is chosen as an extension of the upper frequency
limit of 1 kHz for our commercial machine (MTS 831.50).



Figure 3. Lumped approximations of system of Figure 2(a). (a) isolator is modelled via a scalar sti!ness in the
axial direction; (b) isolator is described by multi-dimensional sti!ness terms. Here, K

ab,l
, K

ab,s
and K

ab,t
represent

axial, shear and rotational sti!nesses respectively.

Figure 4. Rubber isolators used for experimental studies. (a) isolator 1; (b) isolator 2; (c) isolator 3.
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4. MULTI-DIMENSIONAL MOBILITY SYNTHESIS FORMULATION

4.1. SOURCE, PATH AND RECEIVER SYSTEM

Harmonic velocity and interfacial force vectors between sub-systems can be expressed as
follows, with reference to Figure 1(b):

VS1"a11FS1#a12FS2, VS2"a21FS1#a22FS2, (1a, b)

VP2"b22FP2#b23FP3, VP3"b32FP2#b33FP3, (1c, d)

VR3"c33FR3#c34FR4 , VR4"c43FR3#c44FR4 . (1e, f )

Here, aij , bij and cij represent the mobility matrices of source, path and receiver respectively
and the ubiquitous (u) term is dropped for the sake of brevity since only the frequency
domain representation is considered. Also, refer to Appendix A for nomenclature.
Synthesized formulation is obtained by using the motion compatibility Vi"Vj and the force
equilibrium Fi#Fj"0 conditions at each interface (2 or 3). Force equilibrium and motion
compatibility conditions for connecting locations are

VS2"VP2, VP3"VR3, (2a, b)

F
S2
"!FP2, FP3"!FR3 . (2c, d)

Interfacial forces at location 2 are obtained by substituting equations (1b) and (1c) into
equation (2a) and using the relation (2c):

a21FS1#a22FS2"b22FP2#b23FP3, (3a)

FP2"[a22#b22]~1[a21FS1!b23FP3]. (3b)

Similarly, internal forces at location 3 are derived by using equations (1d), (1e) and (2b)
along with equation (2d):

b32FP2#b33FP3"c33FR3#c34FR4, (4a)

FR3"[b33#c33]~1[b32FP2!c34FR4]. (4b)

Substituting equation (3b) into equation (4b) and using equation (2d) lead to the following
interfacial forces at location 3 when external forces are applied at locations 1 (source) and
4 (receiver):

FR3"[[b33#c33]!b32[a22# b22]~1b23]~1 b32[a22#b22]~1a21FS1

![[b33#c33]!b32 [a22#b22]~1b23]~1c34 FR4 . (5)

Similarly, internal forces between source (S) and path (P) are obtained by substituting
equation (4b) into equation (3b) and using equation (2d):

FP2"[[a22#b22]!b23 [b33#c33]~1b32]~1a21FS1

![[a22#b22]!b23 [b33# c33]~1b32]~1 b23 [b33#c33]~1c34 FR4 . (6)
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From equations (5) and (6), each interfacial force can be expressed as follows when location
4 at the receiver is free:

FP2"[[a22#b22]!b23[b33#c33]~1b32]~1a21FS1, (7a)

FR3"[[b33#c33]!b32[a22# b22]~1 b23]~1 b32[a22#b22 ]~1a21FS1. (7b)

Also, when location 1 at the source is free, the interfacial forces are

FP2"![[a22#b22]!b23[b33#c33]~1b32 ]~1b23[ b33#c33]~1c34FR4 , (7c)

FR3"! [ [ b33#c33]!b32[a22#b22]~1b23]~1c34FR4. (7d)

Next, the mobilities (M
ij
) of the synthesized system are represented in terms of mobilities

of components aij, bij and cij , where V1"M11FS1, V1"M14FR4 , V4"M41FS1 and
V4"M44FR4, by using the interfacial forces derived above in equations (7a}d), (1a) and (1f ).
First, consider mobility matrix M11. Substituting FS2 that is obtained by combining
equations (7a) and (2c) into equation (1a) yields velocity at location 1 when an external force
is applied at 1 (source):

M11"a11#a12[b23[b33#c33]~1 b32![a22#b22]]~1a21. (8a)

Also, the velocity at location 4 with force application only at location 1 is found by
substituting equation (7b) into equation (1f ) and letting F

R4
"0:

M41"!c43[b32[a22#b22]~1b23![b33#c33]]~1b32[a22#b22]~1a21 . (8b)

In a similar fashion, velocities at ends (1 and 4) when a force is applied only at 4 can be
obtained from the following:

M14"!a12[b23[b33#c33]~1b32![a22#b22]]~1 b23[b33#c33]~1c34 , (8c)

M44"c44#c43[b32[a22#b22]~1b23![b33#c33]]~1c34 . (8d)

In addition, velocities at intermediate locations can be derived by using a similar
procedure. Substituting FS2, obtained by combining equations (7a) and (2c) into equation
(1b) yields the velocity at location 2 when an external force is applied at 1:

V2"M21FS1"[a21!a22[[a22#b22]!b23[ b33#c33]~1b32]~1a21] FS1. (9a)

Also, the velocity at location 3 for a force application at 1 is derived as follows by using
equations (7b) and (1e) and letting F

R4
"0:

V3"M31FS1"c33[[b33#c33]!b32[a22#b22]~1b23]~1b32[a22#b22]~1a21 FS1. (9b)

Similarly, velocities at an intermediate location when the force is applied only at 4 can be
obtained as follows:

V2"M24FR4"a22[[a22#b22]!b23[b33#c33]~1b32]~1 b23[b33#c33]~1c34 FR4, (9c)

V3"M34FR4"[c34!c33[[b33#c33]!b32[a22#b22]~1b23]~1c34 FR4. (9d)
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4.2. DECOMPOSITION OF COMPONENT MOBILITIES

Let us assume that an isolator acts as a path in Figure 1(b). Its mobility bij for i, j"2, 3 is
de"ned by (8a}d) where VP2"b22FP2, VP2"b23FP3, VP3"b32FP2 and VP3"b33FP3.
Therefore, we need to extract four unknowns b22, b23, b32 and b33 from the mobility equations
(8a}d) of the combined system.

First, rewrite equations (8a) and (8c) as follows:

b23[b33#c33]~1b32![a22#b22]" a21[M11!a11]~1a12 . (10a)

b23[b33#c33]~1b32![a22#b22]"! b23[b33#c33]~1c34M~114 a12, (10b)

Equating equations (10a) and (10b) leads to the equation

[b33#c33]b!1
23 a21[M11!a11]~1a12"!c34M~1

14
a12. (11)

Next, rewrite equations (8b) and (8d) as

b32[a22#b22]~1b23![b33#c33]"!b32[a22#b22]~1a21M~141 c43, (12a)

b32[a22#b22]~1b23![b33#c33]"c34[M44!c44]~1c43 . (12b)

Solving equations (12a) and (12b) simultaneously in terms of [b33#c33] yields the following:

![b33#c33][b32# a21M~141 c43]~1 a21M~141 c43"c34[M44!c44]~1 c43 . (13)

Further, simplify the above equation (13) as follows:

[b33#c33]"!c34[M44!c44]~1[M41a~121 #c43b~123 ]b23 . (14)

Substituting equation (14) into equation (11) and simplifying the resulting equation yields

[M41a~121 #c43b~123 ]"[M44!c44]M~114 [M11!a11]a~121 . (15)

Finally, the transfer mobility matrix of isolator b23 is obtained as follows from equation (15):

b23"a21[[M44!c44]M~114 [M11! a11]!M41]~1c43 . (16)

Also, substituting equation (16) into equation (11) yields the driving point mobility matrix
b33:

b33"!c33!c34M~114 [M11!a11][[M44!c44]M~114 [M11!a11]!M41]~1c43. (17)

Next, consider b22 and b32. Analogous to the previous derivation, solving equations (12a)
and (12b) simultaneously in terms of [a22#b22] yields

[a22#b22]b~132 c34[M44!c44]~1c43"!a21M~141 c43. (18)

Similarly, equations (10a) and (10b) are simultaneously solved in terms of [a22#b22]:

![a22#b22][b32#c34M~114 a12]~1 c34M~114 a12 "a21[M11!a11]~1a12 . (19)

The above equation is rewritten as follows:

[a22#b22]"!a21[M11!a11]~1[M14c~134 #a12b~132 ]b32 . (20)
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Substitution of equation (20) into equation (18) yields

[M14c~134 #a12b~132 ]"[M11!a11]M~141 [M44!c44]c~134 . (21)

Finally, b32 is obtained from equation (21) as follows:

b32"c34[[M11!a11]M~141 [M44!c44]!M14]a12 . (22)

Additionally, the driving point mobility, b22 is derived by substituting equation (22) into
equation (18):

b22"!a22!a21M~141 [M44!c44][[M11!a11] M~141 [M44!c44]!M14]~1a12 . (23)

Driving point mobilities (17) and (23) are further simpli"ed to yield

b22"!a22!a21[[M11!a11]!M14[M44!c44]~1M41]~1 a12 , (24)

b33"!c33!c34[[M44!c44]!M41[M11!a11]~1M14]~1c43 . (25)

5. SIMULATION EXAMPLE FOR MOBILITY SYNTHESIS AND DECOMPOSITION

5.1. PHYSICAL SYSTEM

Figure 2(b) shows a simulation example that consists of an elastic beam and two rigid
masses where EI

S
is the #exural rigidity of the beam and I

m
is the moment of inertia

corresponding to lumped masses (m
a
and m

b
). Here, f and q are harmonic force and moment

excitation amplitudes, respectively, at frequency u, and subscripts a, b and G represent mass
a, mass b and mass center respectively. Mobilities of the combined system are obtained from
the mobility synthesis formulation using equations (8a}d) and compared with the direct
analytical solution that follows.

5.2. DIRECT ANALYTICAL METHOD

Harmonic responses of a beam are derived for both longitudinal (X) and #exural (>)
motions where k is the wave number of the beam, and A, B, C and D are arbitrary constants.
Subscripts ¸ and B are used to denote longitudinal and bending motions of the beam,
respectively:

X(x, t)"X(x) e+ut"MA
L
sin [k

L
x]#B

L
cos [k

L
x] N e+ut , (26a)

>(x, t)">(x) e+ut"MA
B
sin [k

B
x]#B

B
cos [k

B
x]#C

B
sinh [k

B
x]#D

B
cosh [k

B
x] N e+ut .

(26b)

The governing equations in the frequency domain are described as follows where the
ubiquitous term e+ut is dropped:

!m
a
u2X(0)!SE

dX(0)

dx
"f

xa
, (27a)

!m
a
u2>(0)#m

a
h
a
u2

d>(0)

dx
#EI

S

d3>(0)

dx3
"f

ya
, (27b)
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!(I
amG

#m
a
h2
a
)u2

d>(0)

dx
#m

a
u2>(0)!EI

S

d2>(0)

dx2
"q

a
, (27c)

!m
a
u2X(¸)#SE

dX(¸)

dx
"f

xb
, (27d)

!m
b
u2>(¸)!m

b
h
b
u2

d>(¸)

dx
!EI

S

d3>(¸)

dx3
"f

yb
(27e)

!(I
bmG

#m
b
h2
b
)u2

d>(¸)

dx
!m

b
u2> (¸)#EI

S

d2>(¸)

dx2
"q

b
(27f )

When the harmonic force f is applied at location 1 of mass a, f
a
"f, q

a
"!2h

a
f and

f
b
"q

b
"0 and when the force excitation f is shifted to location 4 of mass b, f

b
"f, q

b
"2h

b
f

and f
a
"q

a
"0. Also, f

a
"0, q

a
"q and f

b
"q

b
"0 when a harmonic moment q is applied

at location 1 of mass a, and f
b
"0, q

b
"q and f

a
"q

a
"0 for the moment excitation q at

location 4 of mass b. Therefore, harmonic #exural motions, >(x) and d>(x)/dx for each
excitation, are separately obtained by solving the boundary conditions (27a}f ) in terms of
arbitrary constants A

B
, B

B
, C

B
and D

B
. Also, the translational and rotational velocities at

locations 1 and 4 are related to the #exural displacements and slopes at connections 1 and
4 as follows:

v
1
"juC>(0)!2h

a

d>(0)

dx D,
dv

1
dx

"ju
d>(0)

dx
, (28a, b)

v
4
"juC>(¸)#2h

b

d>(¸)

dx D,
dv

4
dx

"ju
d>(¸)

dx
. (28c, d)

5.3. MOBILITY MATRIX OF A RIGID BODY

Assume that the source of Figure 1(a) is a rigid body like the example of Figure 2(a). Now
we determine the mobility matrix that characterizes the relationship between
multi-dimensional excitations at frequency u and the steady state velocity responses
through the rigid mass (m). First, the mobility matrix M(u) is de"ned in terms of velocity
vector V

G
at the mass center (G), VG"MGGFG , where FG is the excitation vector.

Decompose the formulation in terms of translational (v) and rotational (w) components, and
de"ne

MGG"C
Mv,GG 0

0 Mw,GGD, (29a)

Mv,GG"diagAC
1

mju
1

mju
1

mjuDB, Mw,GG"
1

ju C
I
m,xx

!I
m,xy

!I
m,xz

!I
m,xy

I
m,yy

!I
m,yz

!I
m,xz

!I
m,yz

I
m,zz
D
~1

,

(29b, c)

VG"C
vG

wGD, FG"C
fG

qGD. (29d, e)
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Next, the mobility matrix at an arbitrary location (i) is obtained by relating V and F at
i with corresponding vectors at G where r

iG
is the position vector from G to reference point i:

Vi"C
vG

wGD#C
wG]riG

0 D, Fi"C
fG

qGD!C
0

riG]fGD . (30a, b)

For the sake of convenience, the following transformation matrix Ti is de"ned in
conjunction with a rotation matrix Ri to represent the above expressions where h

xi
, h

yi
and

h
zi

are the components of the position vector r
iG

:

Ti"C
I 0

Ri ID, Ri"C
0 !h

zi
h
yi

h
zi

0 !h
xi

!h
yi

h
xi

0 D . (31a, b)

Using equations (30) and (31), Vi and Fi are described as

Vi"C
I RT

i

0 I D C
vG

wGD"TT
i VG, Fi"C

I 0

!Ri ID C
fG

qGD"T~1i FG . (32a, b)

Using the relationships VG"MGGFG, VG"[TT
i ]~1Vi and FG"TiFi , each mobility matrix

at point i can be obtained. The relation VG"MGGTiFi and the de"nition VG"MGiFi lead to
the mobility equation MGi"MGGTi . Similarly, de"ne MiG"TT

i MGG , Vi"MiGFG and
Vi"TT

i VG . Also, the driving point mobility Mii"TT
i MGGTi can be obtained from the

relations Vi"MiiFi"MiiT~1i FG and Vi"TT
i VG"TT

i MGGFG . In a similar manner, the
transfer mobility Mij"TT

i MGGTj between two points (say i and j) other than the mass center
can be determined from the relations Vi"MijFj"TT

i MGGFG and Fj"T~1j FG . The transfer
mobility Mji can be obtained in the same way and the reciprocity relation Mij"MT

ji is
satis"ed. Therefore, the mobility matrix of a rigid body, between any two points i and j, can
be determined from the inertia properties (G) and geometry information. The mobility
matrix MGG is summarized as follows where it should be noted that the small angle (h)
approximation (sinh+tan h+h and cos h+1) has been applied throughout:

C
Vi

VjD"C
Mii Mij

Mji MjjD C
Fi

FjD"C
TT

i MGGTi TT
i MGGTj

TT
j MGGTi TT

j MGGTjD C
Fi

FjD . (33)

5.4. COMPARISON OF TWO METHODS

The calculations are performed using both procedures for a circular beam with modulus
of elasticity (E) of 8]105 N/m2, mass density (o) of 1000 kg/m3 and a loss factor (g) of 0)1.
The radius and length of the beam are 12 and 30 mm respectively. Masses of rigid bodies
a and b are 0)65 and 0)55 kg, respectively, and the corresponding dimensions in x, y and
z directions are 75, 50 and 64 mm for mass a and 68, 50 and 50 mm for mass b. Mobilities of
the combined system are calculated by employing the mobility synthesis formulation (8a}d)
based on the base driven beam mobilities and the mobilities of rigid bodies a and b.

Given the input parameters, mobilities at locations 1 and 4 of the combined system may
be obtained. Predictions via the mobility synthesis formulation (8a}d) are compared with
the direct analytical solution in Figures 5 and 7. Also, the mobilities of the beam are
extracted from the results of the combined system using equations (16, 17) and (24, 25) and



Figure 5. Synthesized mobilities for a system consisting of two rigid masses and an elastic beam in longitudinal
motion as shown in Figure 2(b). (a) driving point mobility; (b) transfer mobility. Key:** , synthesized or
decomposed mobility; s, direct analytical solution.
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then compared with the analytical mobilities of the beam. As evident from the results of
Figures 6 and 8, both methods yield the same answers. Only the proposed mobility method
will be used in further studies.

6. EXAMINATION OF APPROXIMATE METHODS

6.1. FORMULATION

Several attempts have been made for the identi"cation of transfer sti!nesses including the
rotational component [10}13]. Such schemes typically consider a resilient element that is
located between two inertial components as shown in Figure 9. The "rst method focuses on
high-frequency properties [10, 11] and it may be applied to either axial or #exural motions.
The second method improves the axial (compressional) sti!ness at low frequencies by
modifying the "rst scheme [12, 13]. In our study, key procedures of such approximate
methods are brie#y explained, using the mobility method for the sake of consistency. Both
approximate schemes are analytically examined using a simulation example. Further, the
second approximate method is extended to the identi"cation of #exural sti!nesses.



Figure 6. Decomposed mobilities for a beam using a system consisting of two rigid masses and an elastic beam
as shown in Figure 2(b): (a) driving point mobility; (d) transfer mobility. Key:**, decomposed mobility; s,
direct analytical solution.
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6.2. APPROXIMATE METHOD FOR AXIAL MOTIONS

The discrete system of Figure 9 is examined using the mobility method. This obviously
yields the results reported by Thompson et al. [12] based on lumped system theory. Here,
b
22

and b
33

are the driving point mobilities of the isolator, b
23

and b
32

are the transfer
mobilities of the isolator. Note that K

11
, K

22
, K

12
and K

21
are the corresponding axial

sti!nesses of the isolator. K
1

and K
2

are the sti!nesses of additional elastic elements
attached to rigid masses a and b, respectively, for experimental purposes. Further, f

2
and

f
3

are interfacial forces at connecting locations. The governing equations are
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Figure 7. Synthesized mobilities for a system consisting of two rigid masses and an elastic beam as shown in
Figure 2(b). (a) driving point force mobility; (b) driving point coupling mobility; (c) driving point moment mobility;
(d) transfer force mobility; (e) transfer coupling mobility; (f ) transfer moment mobility. Key:** , synthesized
mobility; s, direct analytical solution.
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Using equations (34a}f ) and eliminating interfacial forces, the following equations are
obtained when an external force ( f

1
) is applied at rigid mass a:
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The simultaneous solution of equations (35a, b) yields the driving point and transfer
mobilities:
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Figure 8. Decomposed mobilities for a beam using a system consisting of two rigid masses and an elastic beam
as shown in Figure 2(b): (a) driving point force mobility; (b) driving point coupling mobility; (c) driving point
moment mobility; (d) transfer force mobility; (e) transfer coupling mobility; (f ) transfer moment mobility. Key:
**, decomposed mobility; s, direct analytical solution.
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where
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In a similar manner, governing equations and mobilities are written as follows when an
external force ( f

4
) is applied at rigid mass b:
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Figure 9. Discrete model of the physical system used to examine approximate methods.
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From equations (36a, b), the motion transmissibility between two rigid masses is
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From the above transmissibility, transfer sti!ness of an isolator K
32

is extracted by
assuming that (K

2
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b
at high frequencies such that u'u@ where
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, as reported by Thompson et al. [12]:
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This approximate method provides reasonable results for the transfer sti!ness at higher
frequencies, but yields a poor estimation at lower frequencies (u'u@ ). In order to enhance
the identi"cation scheme at low frequencies, the following transfer function is introduced in
place of the typical motion transmissibility term [12]:
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From the above transfer function, the transfer sti!ness is now approximated as follows by

assuming that it is equal to the driving point sti!ness, where uA"JK
2
/m

b
[12]:

K
32
+(!u2m

b
)

v
4

v
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!v

4

for u'uA . (42)

6.3. APPROXIMATE METHOD FOR FLEXURAL MOTIONS

Unlike the analysis of Thompson et al. [12], now we examine this system in #exural
motions. Again, we employ the mobility method where b

22
and b

33
are the driving point

mobilities of the isolator; b
23

and b
32

are the transfer mobilities of the isolator in #exure.
Further, K

11
, K

22
, K

12
and K

21
are corresponding #exural sti!nesses of the isolator.

K
1

and K
2

are the #exural sti!nesses of additional elastic elements. Subscripts xh and hx
represent coupling mobilities or sti!nesses, and xx and hh are used for diagonal terms. For
rigid masses, h is the distance between the mass center and connecting locations of the
isolator and I

G
is the mass moment of inertia with respect to its mass center. Here f

2
and

f
3

are interfacial forces and moments at connections, and f
2e

and f
3e

are external forces and
q
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and q
3e

are external moments. The governing equations are
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The equations of motion can be represented in matrix form
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Similar to the axial case, interfacial forces are eliminated from equations (44a}d), and
equations of motion are rewritten as
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ju
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Finally, the motion transmissibility in #exural motion is obtained as follows using equation
(45):

C[b33!b32b~122 b23]~1#Cjumb#
1

ju
K2DD
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[b22b~132 b33!b23]~1V2"V3 . (46)

Next, the sti!ness matrix can be partitioned and represented by sub-matrices of the mobility
matrix by using

K"C
K22 K23

K32 K33D"jub~1"juC
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b32 b33D
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"juC
[b22!b23b~133 b32]~1 ![b33b~123 b22!b32]~1

![b22b~132 b33!b23]~1 [b33!b32b~122 b23]~1 D . (47)

Using equation (47), the motion transmissibility can be represented in terms of sti!ness
matrices as

![K2!u2mb#K33]~1K32V2"V3 . (48a)

Therefore, the transfer sti!ness matrix of an isolator is approximated as follows where
(V3 DV2) represents the velocity transmissibility between rigid masses a and b where
D represents a complex quotient operation for matrices:

K32"u2mb (V3 DV2). (48b)
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Similarly, the transfer function matrix between [V2!V3] and V3 can be de"ned as

![K2!u2mb#K33#K32]~1K32(V2!V3)"V3 . (49a)

Analogous to the identi"cation of axial sti!ness, the transfer sti!ness matrix of the isolator
in #exure is approximated from as follows, where [V3 D (V2!V3)] represents the transfer
function matrix that is by equation (49a):

K32"u2mb [V3 D (V2!V3)]. (49b)

6.4. SIMULATION EXAMPLE

In order to critically examine the generality of the original and re"ned schemes by
Thompson et al. [12], a simulation example is chosen and symmetric and asymmetric
isolators as shown in Figure 2(c) and (d) are examined. Axial (X) and #exural (>) responses
for the asymmetric isolator are written separately as follows where k

L
and k

B
are axial and

#exural wave numbers of beams, respectively:
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Here, subscripts 1 and 2 are used to represent the "rst and second beam, respectively, as
shown in Figure 2(d). Harmonic responses of the asymmetric beam are then obtained by
applying the following boundary conditions where e+ut is again dropped:
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Figure 10. Decomposed axial sti!ness for a beam using a system consisting of two rigid masses and an elastic
beam as shown in Figure 2(b). (a) symmetric beam of Figure 2(c); (b) asymmetric beam of Figure 2(d). Key:** ,
mobility synthesis method; } ) } ) } , approximate method using equation (40); - - - - - , approximate method
using equation (42); s, direct analytical solution.
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Here f
x1

, f
x2

, f
y1

and f
y2

are external forces and q
1

and q
2

are external moments in
equations (51c, d, i}l). For example, when the lateral force f

1
is applied at the free end of

beam 1, f
y1
"f and f

x1
"f

x2
"f

y2
"q

1
"q

2
"0.

For the symmetric beam of Figure 2(c), the parameters of section 5.4 are used again for
simulation. For the asymmetric beam case, the beam consists of two sections, as shown in
Figure 2(d), of the same E, o and g as used previously. The radius and length of the "rst



Figure 11. Decomposed #exural sti!nesses for the symmetric beam of Figure 2(c) using a system consisting of
two rigid masses and an elastic beam as shown in Figure 2(b): (a) force sti!ness; (b) coupling sti!ness; (c) coupling
sti!ness; (d) moment sti!ness. Key:**, mobility synthesis method; } ) } ) } , approximate method using
equation (48b); - - - - -, approximate method using equation (49b); s, direct analytical solution.
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section of the beam are 24 and 20 mm respectively. The dimensions of the second section of
the beam are 12 and 20 mm for the radius and length respectively. Refer to section 5.4 for
other information. Simulation results are shown in Figure 10 for axial sti!ness and Figures
11 and 12 for #exural sti!nesses. In simulating these schemes, the system of Figure 2(b) is
assumed to be free at both ends. Hence, the additional elastic elements, K

1
and K

2
, are not

used since this assumption should reduce inaccuracies that may exist in the identi"cation
results.

As seen in Figure 10(a), the re"ned identi"cation scheme for axial sti!ness based on
equation (42) seems to exhibit good results at all frequencies for the symmetric isolator even
though the transfer sti!ness identi"ed u sin g equation (40) shows discrepancies in the
low-frequency regime. However, as shown in Figure 10(b), deviations are observed in the
asymmetric isolator results, based on both approximate identi"cation schemes. Such
deviations come from the approximations made in the identi"cation schemes and the fact
that the driving point and the transfer sti!nesses are not equal. In the identi"cation of
#exural sti!nesses, discrepancies at low frequencies are observed in either scheme based on
equations (48b) or (49b) for both symmetric and asymmetric isolators as observed in
Figures 11 and 12. The re"ned scheme does not suppress discrepancies at lower frequencies
since the e!ect of the di!erence between the driving point and transfer sti!ness matrices still
remains imbedded. This is due to the coupling that is introduced by #exural motions. Also,
it is seen that deviations are more pronounced for the asymmetric isolator at moderately
high frequencies. Nonetheless, it should be noted that the discrepancies beyond the
low-frequency regime could be reduced when a larger inertial element is used for mass b.



Figure 12. Decomposed #exural sti!nesses for the asymmetric beam of Figure 2(d) using a system consisting of
two rigid masses and an elastic beam as shown in Figure 2(b): (a) force sti!ness; (b) coupling sti!ness; (c) coupling
sti!ness; (d) moment sti!ness. Key:**, mobility synthesis method; } ) } ) } , approximate method using
equation (48b); - - - - , approximate method using equation (49b); s, direct analytical solution.
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7. IDENTIFICATION OF MOBILITY MATRIX OF AN ISOLATOR

7.1. METHODOLOGY

The multi-dimensional mobility matrix of a vibration isolator can be identi"ed using the
proposed mobility synthesis formulation. Multi-degree-of-freedom connections at both
ends of an isolator are modelled since information at both ends of a sub-system would be
needed. Therefore, the transfer mobility matrix has to be identi"ed in addition to the driving
point mobility matrix. Two masses are attached to an isolator as depicted in Figure 2(a) and
the synthesized mobility for the overall system is formulated "rst. Then the mobility matrix
of an isolator is reformulated given the synthesized formulation. Finally, the mobility
matrix of an isolator can be obtained by substituting the synthesized mobility matrix with
the measured mobility matrix for the combined system. It is possible to measure all elements
of the multi-dimensional mobility matrix from the fact that an application of force with an
o!set from the reference point results in both force and moment simultaneously.
Experiments have to be performed at all of the degrees of freedom that need to be identi"ed.
Also, each excitation has to include at least one di!erent degree of freedom. For example,
two excitations are needed to describe force and moment. Therefore, one excitation has to
include a dynamic force and the other excitation must include a dynamic moment for
a beam in #exure. This is obvious from the fact that responses and consequently the
mobility cannot be obtained without appropriately exciting the degree of freedom in
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question. Consequently, one must design a test matrix such that frequency responses yield
the appropriate diagonal and non-diagonal terms.

In order to examine the proposed identi"cation procedure in detail, recall Figure 1(b) that
consists of three sub-systems. In this case, we need to identify mobilities bij of component
(P). Therefore, mobilities M

ij
of the combined system must be measured from speci"c

experiments. The method assumes that aij and cij are well known, based on rigid body
component theory. Here, i, j"2,3 for bij , 1,4 for M

ij
, 1,2 for aij and 3,4 for cij . Also, relate

bij and M
ij

as

C
V1

V4D"C
M11 M14

M41 M44D C
F1

F4D, C
V2

V3D"C
b22 b23

b32 b33DC
F2

F3D . (52a, b)

For a true three-dimensional motion, mobility matrices bij and M
ij

are of dimension
6 and each matrix should be well populated sin ce all motions are interrelated. However, we
assume, for the sake of convenience, that each mobility matrix is composed of six diagonal
terms and some coupling terms that link linear and angular motions in lateral directions. In
other words, we assume that there does not exist any coupling between axial (x) and lateral
motions (y and z) with reference to the co-ordinate system in Figure 1(a). Consequently, the
mobility matrix bij of an isolator in three-dimensional motions has the components
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. (53)

In this representation, the x-axis is the axial direction and the h
x

is the angular motion
about the x-axis. Hence, the coupling terms in these directions vanish.

Next, consider the mobilities of the combined system. The concept of measuring rotation
using translational velocities given moment excitation can be formulated in matrix form
and the resulting mobilities for the combined system are

[M11]"[VA1][FA1]~1, [M14]"[VA1][FC4]~1 , (54a, b)

[M41]"[VC4][FA1]~1, [M44]"[VC4][FC4]~1 (54c, d)

where

[FA1]"[FA1,1 FA1,2 FA1,3 FA1,4 FA1,5 FA1,6], (54e)

[FC4]"[FC4,1 FC4,2 FC4,3 FC4,4 FC4,5 FC4,6], (54f )

[VA1]"[VA1,1 VA1,2 VA1,3 VA1,4 VA1,5 VA1,6], (54g)

[VC4]"[VC4,1 VC4,2 VC4,3 VC4,4 VC4,5 VC4,6]. (54h)



Figure 13. Experimental study used to identify mobilities of an isolator: (a) simpli"ed model; (b) experimental
schematic.
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Here, subscripts A1 and C4 refer to excitations and responses at points 1 of system A and
4 of system C, and the third subscript from 1 to 6 (following the comma) indexes excitation
and response vectors.

7.2. ILLUSTRATION OF THE PROCEDURE FOR PLANAR MOTIONS

As explained earlier, at least one excitation vector corresponding to the mobility matrix
has to incorporate each degree of freedom. This is obvious from the fact that mobility for
the corresponding degree of freedom cannot be obtained without an excitation for that
degree of freedom. This requirement also corresponds to the existence condition for the
inverse of excitation matrix (F). This procedure is based on the assumption that known
sub-systems at either ends of an isolator are rigid bodies since this assumption allows us to
relate translational responses to rotation responses. A simpli"ed procedure for planar
motion is shown in Figure 13(a).

First, one must select arbitrary reference locations within each rigid body. In Figure 13(a),
locations 1 and 4 are designated as the reference points for masses 1 and 2, respectively, and
locations 2 and 3 are designated as the interfaces between isolator with masses 1 and



TABLE 1

¸ist of instruments used for experimental studies

Item Manufacturer Model No.

Accelerometer PCB A353B66
Impulse hammer PCB 086B03

Analog summing circuit In-house *

Signal conditioner PCB 480E09
Dynamic signal analyzer HP HP35670A

MTS testing system MTS 831)50

Figure 14. Measured mobility magnitudes for the system consisting of two rigid masses and isolator 1 in axial
motion. (a) driving point mobility M

11
; (b) transfer mobility M

12
; (c) transfer mobility M

21
; (d) driving point

mobility M
22

. Key:** , measured; s, predicted mass line.
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2 respectively. The "rst task is to experimentally determine mobilities at reference points of
the combined system, and then the mobilities of the isolator are decomposed from measured
mobilities of the combined system using equations (8a}d). As explained earlier for
three-dimensional motions, it is assumed that the axial motion (x-axis) of the isolator is
uncoupled from its #exural motions (y and h

z
). Also, the small angle (h) approximation

(sinh+tan h+h and cos h+1) for the rigid bodies is made. Mobilities at reference points



Figure 15. Measured driving point mobility magnitudes for the system consisting of two rigid masses and
isolator 1 in #exural motion. (a) force mobility; (b) coupling mobility M

yh
; (c) coupling mobility M

hy
; (d) moment

mobility. Key:**, measured; s, predicted mass line.
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of the overall system in x direction are independent of the ones along the y- and h
z
-axis

when the reference points are placed at the center of the rectangular masses along the y-axis.
Therefore, excitation at reference locations 1 and 4 of the overall system along the x-axis
does not generate any displacements along the y- and h

z
-axis. Here, it is further assumed

that displacements of a rigid body in the y-axis are the same as those on a line parallel to the
y-axis by the small angle approximation. For example, v

y1
is used to describe the

displacement of reference point 1 along the y-axis.
In order to determine mobilities of the combined system, three sets of measurements are

needed for each mobility matrix in planar motions. First, for the measurement array of
Figure 13(a), excitation and velocity sets for the mobility matrix M

11
are as follows where

subscripts after the comma refer to the excitation counts:

[FA1,1]"[ f
x1,1

0 0]T, [VA1,1]"[!v
x1,1

0 0]T , (55a, b)

[FA1,2]"[0 !f
y1,2

0]T , [VA1,2]"[0 !v
y1,2

(v
y1,2

#v
y2,2

)/¸
x1

]T , (55c, d)

[FA1,3]"[0 !f
y2,3

!¸
x1

f
y2,3

]T , [VA1,3]"[0 !v
y1,3

(v
y1,3

#v
y2,3

)/¸
x1

]T .

(55e, f )



Figure 16. Measured transfer mobility magnitudes for the system consisting of two rigid masses and isolator 1 in
#exural motion: (a) force mobility; (b) coupling mobility M

yh
; (c) coupling mobility M

hy
; (d) moment mobility. Key:

**, measured; s, predicted mass line.
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According to equations (54a) and (54e, f ), the mobility matrix M
11

is calculated using
measured vectors as follows:

M11"

M11,xx M11,xy M11,xh

M11,yx M11,yy M11,yh

M11,hx M11,hy M11,hh

"

!v
x1,1

0 0

0 !v
y1,2

!v
y1,3

0 (v
y1,2

#v
y2,2

)/¸
x1

(v
y1,3

#v
y2,3

)/¸
x1

f
x1,1

0 0

0 !f
y1,2

!f
y2,3

0 0 !¸
x1

f
y2,3

~1

.

(56)



Figure 17. Comparison of axial dynamic sti!nesses for isolator 1. (a) dynamic sti!ness modulus; (b) loss angle.
Key:**, mobility model; - - - - , measured (MTS): f

mean
"1N.
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For the sake of illustration, the mobility matrix M
11

is rewritten as follows for harmonic
excitations with unity amplitudes:

M11"

v
x1,1

0 0

0 v
y1,2

v
y1,3

0 w
z1,2

w
z1,3

1 0 0

0 1 1

0 0 ¸
x1

~1

"

v
x1,1

0 0

0 v
y1,2

v
y1,3

0 w
z1,2

w
z1,3

1 0 0

0 1 !1/¸
x1

0 0 1/¸
x1

"

v
x1,1

0 0

0 v
y1,2

(v
y1,3

!v
y1,2

)/¸
x1

0 w
z1,2

(w
y1,3

!w
y1,2

)/¸
x1

.

(57)
Note that all measurements must be consistent in terms of sign convention though our
analytical treatment assumes that all sensors provide data in the positive directions. Since
the force excitation at reference point 2 can be replaced by a sum of force and moment at
reference 1, responses at reference 1 are given by a linear superposition:

v
y1,3

"M11,yy#M11,yh¸x1
, w

y1,3
"M11,hy#M11,hh¸x1

. (58a, b)



Figure 18. Transfer sti!nesses in #exural motion for isolator 1, as extracted using the identi"cation scheme: (a)
lateral sti!ness modulus; (b) coupling sti!ness modulus; (c) coupling sti!ness modulus; (d) rotational sti!ness. Key:
**, experimental result; } ) } ) }, curve "t.
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Also, by noting that v
y1,2

"M11,yy and w
y1,2

"M11,hy , and using the following relationships,
it is seen that each element in the resulting equation (57) represents the corresponding
component of M

11
:

(v
y1,3

!v
y1,2

)/¸
x1
"(M11,yy#M11,yh¸x1

!M11,yy)/¸x1
"M11,yh , (59a)

(w
y1,3

!w
y1,2

)/¸
x1
"(M11,hy#M11,hh¸x1

!M11,hy)/¸x1
"M11,hh . (59b)

Similarly, the following measurement sets are used to "nd the mobility matrix M
14

:

[FA1,1]"[ f
x1,1

0 0]T , [VC4,1]"[v
x4,1

0 0]T , (60a, b)

[FA1,2]"[0 !f
y1,2

0]T , [VC4,2]"[0 v
y4,2

(v
y3,2

#v
y4,2

)/¸
x2

]T , (60c, d)

[FA1,3]"[0 !f
y2,3

!¸
x1

f
y2,3

]T , [VC4,3]"[0 v
y4,3

(v
y3,3

#v
y4,3

)/¸
x2

]T .

(60e, f )



Figure 19. Comparison of axial dynamic sti!nesses for isolator 2. (a) dynamic sti!ness modulus; (b) loss angle.
Key:**, mobility model; - - - - , measured (MTS): f

mean
"2N.
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A similar procedure is used for the mobility matrix M
41

:

[FC4,4]"[!f
x4,4

0 0]T , [VA1,1]"[!v
x1,4

0 0]T , (61a, b)

[FC4,5]"[0 !f
y4,5

0]T , [VA1,2]"[0 !v
y1,5

(v
y1,5

#v
y2,5

)/¸
x1

]T , (61c, d)

[FC4,6]"[0 !f
y3,6

¸
x2

f
y3,6

]T , [VA1,3]"[0 !v
y1,6

(v
y1,6

#v
y2,6

)/¸
x1

]T ,

(61e, f )

For the mobility matrix M
41

, the following apply:

[FC4,4]"[!f
x4,4

0 0]T , [VC4,4]"[v
x4,4

0 0]T , (62a, b)

[FC4,5]"[0 !f
y4,5

0]T , [VC4,5]"[0 v
y4,5

(v
y3,5

#v
y4,5

)/¸
x2

]T , (62c, d)

[FC4,6]"[0 !f
y3,6

¸
x2

f
y3,6

]T , [VC4,6]"[0 v
y4,6

(v
y3,6

#v
y4,6

)/¸
x2

]T . (62e, f )



Figure 20. Transfer sti!nesses in #exural motion for isolator 2, as extracted using the identi"cation scheme: (a)
lateral sti!ness modulus; (b) coupling sti!ness modulus; (c) coupling sti!ness modulus; (d) rotational sti!ness. Key:
**, experimental result; } ) } ) }, curve "t.
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Finally, mobility matrices of an isolator are calculated using equations (16, 17) and (24, 25)
given the measured mobility matrices of the combined system and the analytical
formulation for rigid bodies. Dynamic sti!ness matrices of this isolator can then be
obtained by using equation (47) when needed.

8. EXPERIMENTAL STUDIES

8.1. EXPERIMENTAL SYSTEM AND MEASUREMENT SAMPLES

Mobility models for three rubber isolators are identi"ed using the proposed procedure.
Two masses are attached to the ends of each isolator and the combined system of Figure
2(a) is suspended to simulate free boundaries. See section 5.4 for information on masses
a and b used for experimental work. The reciprocity principle has been applied throughout
the synthesis procedure since small inconsistencies or noise in frequency response function
measurements can signi"cantly contaminate results via the numerical inversion process that
is essential to the entire procedure. Figure 13(b) shows a schematic that is used for
experimental work; refer to Table 1 for a listing of instruments. The impulse hammer is used



Figure 21. Comparison of axial dynamic sti!nesses for isolator 3: (a) dynamic sti!ness modulus; (b) loss angle.
Key:**, mobility model; - - - - , measured (MTS): f

mean
"3 N.
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for force excitation and "ve spectra (up to 2 kHz) are averaged for each measurement. An
analog summing circuit is used to decompose the translational accelerations acquired at
two opposite locations into rotational motions.

Measured mobilities of the combined system with isolator 1 are shown in Figure 14 for
longitudinal motions, along with mobilities of rigid masses used for experimental work.
Observe that the driving point mobilities converge to a mass line as frequency increases,
unlike the transfer mobilities. Also, #exural mobilities of the combined system with isolator
1 are shown in Figure 15 for the driving point and in Figure 16 for the transfer point, along
with mobilities of the rigid masses used.

8.2. RESULTS AND VALIDATION

Measurements of mobilities for the combined system are performed by acquiring
acceleration data from rigid masses. From this measured set, moblity matrices at the
reference points of the combined system are obtained using equations (54a}d). In our study,
the reference points are set at the extreme ends of the combined system. Then, mobility
matrices of the isolator in question are calculated using equations (16, 17) and (24, 25), and
subsequently dynamic sti!ness matrices are obtained from equation (58).

The typical results for transfer sti!nesses are shown in Figures 17}22 for three isolator
examples of Figure 4. Note that the experimental validations, using the MTS 831.50



Figure 22. Transfer sti!nesses in #exural motion for isolator 3, as extracted using the identi"cation scheme: (a)
lateral sti!ness modulus; (b) coupling sti!ness modulus; (c) coupling sti!ness modulus; (d) rotational sti!ness. Key:
**, experimental result; } ) } ) }, curve "t.

ISOLATOR STIFFNESS CHARACTERIZATION 909
machine, are conducted up to 1000 Hz. The MTS method [9] employs the blocked end
boundary and only the transfer sti!ness is measured. First, sti!ness modulus and loss angle
in axial direction are shown in Figures 17, 19 and 21. One may calculate loss factor (g) from
loss angle (U) using the relationship g"tanU. Static sti!nesses in axial motions are 51, 130
and 5 N/mm for isolator 1, 2 and 3 respectively. Results identi"ed from the proposed
experiment are given up to 2000 Hz. Predictions for zero preload are compared with the
MTS test results (with minimal preloads); these could only be obtained up to 1 kHz.
Excellent agreements are observed between results based on the proposed identi"cation
method and experimental data yielded by the MTS machine. Further, predictions (with zero
preload) are compared in Table 2 with measured results (at several small preloads). Observe
that isolator 2 shows the preload-dependent sti!ness, unlike isolators 1 and 3 that exhibit
relatively insensitive sti!ness to preloads. Next, sti!ness moduli in #exural motions are
shown in Figures 18, 20 and 22 for isolators 1, 2 and 3, respectively, along with their curve
"ts. The #exural sti!ness modulus is curve "tted using a numerical function that employs
the least-squares method in the frequency domain; one may establish a visco-elastic
network model using such results. It is observed that the coupling sti!ness moduli of
symmetrical isolator 2 are almost identical, less than 10% di!erence, as shown in Figure 20
while the ones of Figures 18 and 22 are di!erent for asymmetrical isolators 1 and 3. Note
that the coupling terms of transfer sti!ness are equal in magnitude for a symmetrical
isolator but are di!erent for an asymmetrical isolator. It is also observed in Figures 17}22



TABLE 2

Comparison of axial dynamic sti+nesses of isolators for various preloads

Isolator Method Preload (N) Sti!ness 100 Hz 300 Hz 500 Hz 700 Hz 930 Hz

1 Proposed 0 Sti!ness modulus
DKI D (N/mm)

90 103 137 160 201

MTS 1 92 100 118 147 194
5 105 118 138 166 202

10 93 106 126 155 202
Proposed 0 Loss angle U

K
(deg) 5 13 14 14 8

MTS 1 10 12 11 9 2
5 11 13 13 11 6

10 11 13 13 11 4

2 Proposed 0 Sti!ness modulus
DKI D (N/mm)

165 169 164 172 177
MTS 2 164 174 162 193 179

63 204 210 214 218 213
12 233 240 242 245 239

Proposed 0 Loss angle U
K

(deg) 4 9 13 15 15
MTS 2 5 7 9 14 10

63 4 7 9 10 10
12 4 7 8 10 10

3 Proposed 0 Sti!ness modulus
DKI D (N/mm)

17 23 28 46 77

MTS 3 18 22 30 42 86
12 17 23 28 41 84
23 16 20 27 40 83

Proposed 0 Loss angle U
K

(deg) 13 15 14 9 !14
MTS 3 8 10 8 2 !26

12 9 10 10 2 !27
23 8 10 9 3 !28
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that the wave e!ects occur within an isolator and therefore resonances are observed in
sti!ness spectra. For example, resonance at 1500 Hz in Figure 17(a) accounts for the wave
e!ect of isolator 1.

9. CONCLUSION

A new characterization method has been proposed for the identi"cation of
multi-dimensional frequency-dependent transfer sti!nesses of an isolator. Our method uses
a physical system that consists of two inertial elements and an isolator. Further, re"ned
multi-dimensional mobility synthesis and decomposition procedures have been formulated.
Our analytical framework removes some of the de"ciencies of available synthesis models
[18, 21, 22]. The results of the proposed scheme compare well with test data for three
isolators in axial motions on a commercial machine up to 1 kHz. Also, approximate
identi"cation methods, as proposed by Thompson et al. [12], are critically analyzed for
axial sti!nesses. The aforementioned method [12] is then extended to the identi"cation of
isolator sti!nesses in #exure. One simulation example is carried out for both symmetric and
asymmetric isolators. Such approximate methods show some discrepancies from the exact
sti!ness up to certain transition frequency, depending upon the isolator, due to the
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simpli"cations that are made in the formulation of such methods. For instance, this
disagreement is pronounced for an asymmetric isolator.

The chief inherent limitation of our method is that the preload cannot be applied in the
current con"guration. This restriction must be overcome in a subsequent version of this
method before applying it to assess practical devices. Re"nements could incorporate
a support structure, which may be either a very compliant base (made with a rubber-like
material) or a massive block, in addition to the system of Figure 2(a). In case of a rubber
base, the e!ect of elastic support on the mobility of the combined system of Figure 2(a) must
be analytically examined to "nd possible approximations as the frequency increases. For
a massive block-type support, the mobilities of the support must be experimentally
obtained. The mobility of the combined system of Figure 2(a) should be decomposed such
that support e!ects are excluded. The proposed analytical methodology could be
conceptually re"ned to obtain the sti!ness of an isolator. Future research should also
consider the identi"cation issues arising from the driving point sti!ness at higher
frequencies. Further, an investigation of correlation between laboratory and in situ
measurements is desirable. Finally, non-linear e!ects need to be examined [17].
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APPENDIX A: NOMENCLATURE

A, B, C, D arbitrary constants
d diameter
E Young's modulus
f force amplitude
f force amplitude vector
F excitation vector
G shear modulus
h reference location in rigid body with respect to mass center
I identity matrix
I
S

area moment of inertia
I
m

mass moment of inertia
j J!1
k wave number
K sti!ness
K sti!ness matrix
¸ length
m mass
m inertia matrix
M mobility
M mobility matrix
q moment amplitude
q moment amplitude vector
R rotation matrix for the cross vector product
S section area
S, P, R source, path and receiver
T transformation matrix
X displacement in x direction
> displacement in y direction
v translational velocity
v translational velocity vector
V velocity vector
w rotational velocity
w rotational velocity vector
x, y, z cartesian co-ordinates
a, b, c mobilities of components
a, b, c mobility matrices of components
g loss factor
h rotational displacement
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o density
U loss angle, deg
u frequency, rad/s

Subscripts

G mass center
a, b mass a and b
B #exural motion
i, j indices or reference points in mass
¸ axial or longitudinal motion
mean mean load
S, P, R source, path and receiver
v translational component of mobility matrix of rigid body
w rotational component of mobility matrix of rigid body
x, y, z cartesian co-ordinates
1, 2, 3, 4 reference locations

Superscripts

T transpose
& complex valued
@ , A frequency used for criterion

Operators

D determinant of system matrix
diag diagonal matrix
D complex quotient operation for matrices
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